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Abstract. The question of constructing the finite-genus quasiperiodic solutions for the Ablowitz—
Ladik hierarchy (ALH) is considered by establishing relations between the ALH and Fay’s identity
for the6-functions. It is shown that using a limiting procedure one can derive from the latter an
infinite number of differential identities, which can be arranged as an infinite set of differential-
difference equations coinciding with the equations of the ALH, and that the original Fay's identity
can be rewritten in a form similar to the functional equations representing the ALH which have
been derived in the previous works of the author. This provides an algorithm for obtaining some
class of quasiperiodic solutions for the ALH, which can be viewed as an alternative to the inverse
scattering transform or the algebro-geometrical approach.

1. Introduction

The problem of constructing quasiperiodic solutions (QPS) is one of the most challenging
problems of the theory of integrable systems, and many mathematicians and physicists have
spent much effort to obtain the QPS for almost all equations that are known to be integrable.
The Ablowitz—Ladik hierarchy (ALH), which has been introduced in [1], is no exception. So,
for example, one should mention the works by Bogolyubov and co-workers [2, 3] and Ahmad
and Chowdhury [4, 5] devoted to the discrete nonlinear &tihger equation (DNLSE) and the
discrete modified Korteveg—de Vries equation (DMKdV), which are the best studied equations
of the ALH. There authors were studying this problem within the framework of the inverse
scattering transform (IST). Another, the so-called algebraic-geometrical, approach has been
used by Milleret al [6] who considered the complex version of the DNLSE and obtained
the Baker—Akhiezer function and QPS corresponding to finite-genus Riemann surfaces. This
work provides an almost exhaustive solution of the problem of the finite-genus QPS, but its
results need some further simplification to be useful for practical purposes, especially if one
wants to extend them to the higher equations of the ALH and in this work | will try to avoid
algebro-geometrical language, and will use a more direct (and simpler) strategy. As has been
established in [2—6], each finite-genus QPS of the DNLSE can be presented as a quotient of
thed-functions of some arguments multiplied by an exponent of some phase, all of them being
somelinear functions of the coordinates (the same is true in the cases of the DMKdV as well
as all other equations of the hierarchy). Thus, since we know the structure of the solutions,
all we have to do to derive them is to calculate some number of constant parameters. So,
it is desirable to develop some method, which will enable us to obtain these constants (and
hence solutions) straightforwardly, not using technique (sometimes rather complicated) of the
theory of functions and differentials on hyperelliptic Riemann surfaces. It turns out that this
can be done. Moreover, this can be done not only for the DNLSE or DMKdV but, in principle,
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for all equations of the hierarchy simultaneously. Namely, this is the main question of this
paper. The key point is that tieefunctions of the finite-genus Riemann surfaces (of which
the finite-genus QPS are built-up) satisfy some algebraic relation, the so-called Fay'’s trisecant
formula [7, 8], which can be used to obtain an infinite number of differential identities, which,
as will be shown below, are closely related to the ALH, and can be used to obtain the QPS we
are looking for. Such an approach also demonstrates some new, to my knowledge, feature of
the ALH (and this was one of the main motivations to write this paper): the equations of the
ALH naturally appear when flows over Riemann surfaces are considered (I will return to this
question below).

The paperis organized as follows. After presenting some basic facts onthe ALH (section 2)
I will discuss Fay’s formula and its differential consequences (section 3). These results will
be used to obtain the finite-genus QPS for the ALH (section 4).

2. Ablowitz—Ladik hierarchy

The ALH is an infinite set of integrable differential-difference equations, which was introduced
in [1]. All equations of the ALH can be presented as the compatibility condition for the linear
system

LIJn+l = Un\pn (21)
a .
a—\pn = vy, j=41, 42, ... (2.2)
Zj
whereV, is a 2-columnlJ, andV, are 2x 2 matrices withl/, being given by
Ao
U, =U,(») = ( Gn A1 ) (23)

(herex is the auxiliary (spectral) constant parameter) and the matvi¢esare polynomials
in &, »~1. The ALH can be split in a natural way into two subsystems (subhierarchies). One

of them corresponds to the case wher j =12, ..., arejth-order polynomials in.~*
(‘positive’ subhierarchy). Its simplest equations are
gy .
1 = —1Pnqn+1 (24)
9021
or, .
s = 1pnrn-1 (25)
021
where
Pn = 1_‘1nrn‘ (26)

The ‘negative’ subhierarchy is build up of tilematrices being polynomials in Its simplest
equations are

g, .

agl = _lpn‘Zn—l (27)
ar, .

2 . (2.8)
d0z1

(I use the notation; =z, j=1,2,...).
It has been shown in [10] that the ALH can be presented in the form of the functional-
difference equations:
qn(Zs Z) — (qn (Z - I[‘i:]s Z) = %_[1 —4qn (Z» Z)rn(Z - |[$], Z)]Qrﬁl(zs Z) (29)
ra(z,2) — ra(z +i[§], 2) = §[1 — gu (2 +i[£]. Dru(z, D]ra-1(2, 2) (2.10)
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for the ‘positive’ subhierarchy, and

4n(2,2) — qu(z, 2 —I[ETD = 7L — gu(z, Dra(z, 2 — i[EDIgn-1(z, 2) (2.11)
ra(z,2) = ra(z, 2HIET]) = E7H L — qu(z, Z+i[E Dz, Dran @, 2) (2.12)
for the ‘negative’ one. Here the designations

fz,2) = f(z1,22,23, ..., 21,22, 23, - . ) (2.13)
and
[ £il€],2) = faa+iE, 20 £18%/2,23 +1€%/3,..., 21,22, 23, .. (2.14)
fz£i[E™) = f(z1. 22, 23, - - -, T EiET Tk iET2/2, 73 £1E73/3,...) (2.15)

are used. Expanding equations (2.9) and (2.10) in power seesi@can obtain all equations
of the ‘positive’ subhierarchy. Analogously, expanding equations (2.11) and (2.12) in power
series irt ~! one can obtain all equations of the ‘negative’ one.

In what follows | will also use the tau-functions of the ALH,, p, andzt,, which are
defined by

g =2 o= (2.16)
Tn Tﬂ
and
Tp—-1Tn+l = 7:,12 — OnPn- (217)

The functional representation of the ALH in terms of the tau-functions can be written as

7,(2) 0, (2 +1[E]) — 0,(2) T (z +1[E]) = & T,1(2) Opea(z +[E]) (2.18)
0n(2) T (2 +i[&]) — 2 (2) pu(z +1[E]) = & pu-1(2) Tura(z +[E]) (2.19)
7,(2) T (2 +i[E]D) — pu(2) 04 (z +1[E]) = Ty-1(2) Tasa(z +i[E]) (2.20)
(where the dependence dnis omitted) and
(D)o E+H[E) -0, nE+i[ET) = 6 @ o1 G Hi[ET) (2.21)
pn@) @ HI[ETD — 5@ p G +iIlETD) =€ pen (@) TG +I[ETD) (2.22)
@) @ +i[ETD = pa(@) 0a G +i[ET]) = (D) G +ilETD) (2.23)

(where the dependence onis omitted) [9, 10].

The key idea of the present work is to establish the relation between these equations and
Fay’s famous identity for thé-functions, which can be used to derive the finite-gap QPS of
the ALH.

3. Fay’s identity

In this paper we will deal with the compact Riemann surf&cef the genug corresponding
to the hyperelliptic curve

52 = Pogea(€) (3.1)

wherePo,+2(£) is a polynomial without multiple roots of degreg 2 2. In the framework of
the IST such curves appear in the analysis of the scattering problem (2.1). For example, in the
case of the periodic conditions

Gn+g+l = (qn g+l = T (32)
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the polynomialP,+,(£) is defined by

Pogs2(A?) = 22 W tr T,(W)]% — 4detT, (1)} (3.3)
whereT, (1) is the transfer matrix of the scattering problem (2.1),

T,(X) = Upsg(A) ... Uy() (3.4)

(it can be shown straightforwardly that the right-hand side of (3.3) under the restriction (3.2)
does not depend on the index Topologically,X is a sphere witly handles. One can choose
a set of 2 closed contours (cyclesy;, b;}i=1,... , With the intersection indices

.....

a,-oaj:b,»obj:O a;ob,:BU l,jzl,,g (35)
and findg independent holomorphic differentials, say ones given locally by
k—ld
P . k=1...,g (3.6)

“ VP2g+2(€)

which can be used to construct the canonical basis of the holomorphic 1-forms
8
Wy = Z Cri (3.7)
=1
wherew,, satisfy the normalization conditions
% W = ‘Sik- (38)
Then, the matrix of thé-periods,
Q,‘k Z% Wi (39)
b;

determines the so-called period lattide, = {m + Qn, m,n € Z#}, the Jacobian of this
surface JacX) = C#/Lg (2g torus) and Abel mapping — JagX),

P
P> | w (3.10)

Py
wherew is theg-vector of the 1-formsy = (w1, . .., )" and Py is some fixed point of.
A central object of the theory of the compact Riemann surfaces i thaction,

0(¢) = 6(¢, £2),

0(¢) = ) explrinQn + 2ring) (3.11)
nezs
which is a quasiperiodic function b
6(¢+n)=0(0) (3.12)
0(¢ +Qn) = expl—rinQn — 27in¢}0(¢) (3.13)

forn € 7Z8.
To simplify the following formulae | will use the designations

A
6A(0) = e(c + fB w) (3.14)
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64 :9[6]([:w>. (3.15)

Hered[c](¢) is the so-called-function with characteristics,

and

0[c](¢) = expiwiaQa + 27ia(¢ + b)}O(C + Qa + b) c=(a,b) (3.16)

andd = (8', 8") € 372 /Z% is a non-singular odd characteristic,

0[6](0) =0 grag 0[4](0) # 0. (3.17)
Function (3.15) is closely related to the prime form [7, 8],
65
EP,Q) = ———+—— 3.18
0 VX (P)V/x(Q) (3.18)
wherey is given by
£ ad
1P = Y- (55 0181 ) 0P (3.19)
i=1 !

The prime formE (P, Q) is skew-symmetricE(P, Q) = —E(Q, P), has a first-order zero
along the diagonaP = Q and is otherwise non-zero. Analogously,

b = 67 6r =o. (3.20)

One of the most interesting results of the theory oftHanctions is the following identity
for thed-functions associated with the finite-genus Riemann surfaces, Fay’s identity:

Opt 05 042(C) 05 (Q) — 652 652 071 (O) 054(C) = 072652 6.(Q) 04152 (0) (3.21)
(herePy, ..., P4 are arbitrary points oK) and namely this formula will be the basis of the
following consideration.

4. Quasiperiodic solutions

Itis already known that in the quasiperiodic case the tau-functions of the ALH are (up to some
simple factors) the@-functions of different arguments and | am now going to present Fay’'s
identity and some of its corollaries in a form similar to (2.18)—(2.20) and (2.21)—(2.23), which
will enable us to obtain the finite-gap solutions of these functional equations, i.e. to obtain the
finite-gap solutions of the ALH.

Hereafter | will use the letterd, B, C andD for the points of the Riemann surface, which
correspond to the points 0 ard of the complex plane,

A = X+ D = OX_ B = 07 C = O+. (41)

Since A, D and B, C are poles and zeros of the meromorphic functiai), which is a
projection ofX onto the extended complex plafé sending a poin®? = (s, £) into &, they
satisfy, according to Abel's theorem, the conditiﬁfé)w € Lg. The integration paths in
(3.10) can be chosen in such a way that

/BAD w=0 (4.2)

C
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(here zero stands fdr from C$, not from Ja¢X)) and in what follows | will accept (4.2) as
true.

Now | am going to use (3.21) thinking of three points frg@, P,, P3, P4) as constant
(I will choose them from the s&tA, B, C, D)) and the fourth one (I will denote it by) as
variable. Setting Py, P, P3, P4) = (A, B, C, P) one can rewrite (3.21) as

0E 65 6(0)65(0) +63 6 62(0) 05 (O) = 62 85 65O 6L (©). (4.3)
This formulais the quasiperiodic analogue of (2.18). Shifting the arguments@fithmetions,
¢—> ¢+ fAC w, one can obtain the equation, which will be transformed below to (2.19):

02 65 0505 +03 08 00055 (©) =08 85 6505 (). (4.4)
Atlast, replacing in (3.21)P1, P», P3, P4) with (A, P, C, D) using (4.2) and making the shift
¢(—> ¢+ fAC w one can write the identity

05686065 — 03 65 650 65(Q) = 62 6565065 (©) (4.5)
which is a quasiperiodic analogue of (2.20).

Our first goal is to present equations (4.3)—(4.5) in the bilinear form. To this end | will
first shift the arguments of thefunctions: ¢ — ¢,,,

Cn=C+n/Bw. (4.6)
A
Next, | will introduce the functions, (P), p,(P) andz,(P),
u(P) = a,(P) 0§ (C,) (4.7)
ou(P) = Bu(P) 01 (C,) (4.8)
pn(P) = ya(P) 057 (C,)- (4.9)
It is not difficult to verify that if one chooses the functioms, 8., v, as follows:
oy (P) = o, 1"/ explngpc (P)) (4.10)
Bu(P) = q.&" exploac(P)}e, (P) (4.11)
Yu(P) = rye™" expl—gac (P)}a,(P) (4.12)
where the functiongr are defined in the vicinity of the poir by
6r ge
exploor(P) — por(B)} = =5 = (4.13)
Ok 05
the constani is given by
Lo e (4.14)
0p 08
anda., g«, ¥« ande are arbitrary constants satisfying
(63)°
qsTs = _éf)‘ ég (4.15)

then (4.3)—(4.5) can be rewritten in terms of the functien&), p,(P) andz,(P) as
7y(B) 0, (P) — 0,(B) T,(P) = K(P) t4-1(B) 0p+1(P) (4.16)
Pn(B) Ty (P) — 7y (B) pu(P) = K(P) pp-1(B) ty+1(P) (4.17)
70 (B) T (P) — pu(B) 0,(P) = 1,-1(B) Ty+2(P) (4.18)
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where

164 9P or
K(P)==--L28°C
= Sarerar

(4.19)

Thus we have presented Fay’s identities in the bilinear form similar to (2.18)—(2.20). What
| have to do now is to introduce adependence in such a way that a shift over the Riemann
surface from pointB to a pointP (which correspond to the points 0 aadf the complex
plane) can be taken into account by the simultaneous shifts- z,,, +i&" /m:

fn(B) = f;l(Z) = fVl(le Z27 Z37 .. ')’ (420)

[o(P) = fuz +I[ED) = fu(za +i&, 22 +16%/2, 23 +1E%/3, .. ). (4.21)

(I hope that the usage of the same letters for functional dependence on both the point of the
Riemann surface and the ALH variablgswill not lead to confusion.) In other words, | want
to introduce functiong (z1, z2, . ..) andggr(z1, z2, . . .) such that

)
C+ilE]) — C@) = f w 4.22)
B
and

Yor(@ +I[E]D) — wor(2) = @or(P) — @or(B). (4.23)

This can be done as follows. In the neighbourhood of the pifwhich is a preimage of the
pointé = 0 of the complex plane) the components of the integral in (4.22) can be presented
in terms of thet-coordinate as

1—1 dx

»
fB on (&) = Z k.l ,—P2g+2 o

where the sign of the square root is fixed ¥t = 1. Hence, taking to be a linear function
of the coordinates,,,

(4.24)

(=¢@) =Y ¢"zn (4.25)

m=1

one can conclude that to satisfy (4.22) the vectdFs should be defined as the coefficients of
the series

(m) «m __
n;lc £ = 'EE W) (4.26)
(hereW is the vector with the componeni®,). Using (4.24) one can rewrite (4.26) as

8

(m)
Z 2 ; \/P2g+2(§)

(the right-hand side of this equation should be understood as a power sétjes in
In a similar way one can tackle equation (4.23) and to derive the following regytz)
is the linear function,

(4.27)

[e ]
9or(2) = Z PO Zm (4.28)
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with the coefficientsyy being defined by

N d O11(fy wt WE)
D ¥grE" =i (f% ) (4.29)
m=1 S 9[6] (fR wt W(&_))
(the right-hand side is again a power serie§)in
Thus one can write the following expressions for the tau-functions:

7,(2) = "2 expingne (2)} 0, (2)) (4.30)
C

0(2) = que" 1" 2 expingpe (2) + pac(2) 6’<Cn @) — / w) (4.31)

A
C

pu(2) = re ™" "2 explingpc (2) — pac(2)} 0 (C,, (2) + f w>- (4.32)

A

At last, we have to rewrite the functiaki(P) from the right-hand side of (4.16)—(4.18).
This is the first time, since Fay’s identity has been written down, that we need some facts from
the theory of the Riemann surfaces—until now everything has been done by simple algebra.
Consider the function

f(P):é —=. (4.33)

This is a single-valued (due to condition (4.2)) function which possesses zeros at theoints
C and poles a#, D. Remembering thaB, C correspond t¢ = 0, andA, D to & = oo, one

can easily obtain one function with the same dividdt;, C — A — D, namely, the projection

7 (P) discussed above (see the paragraph before (4.2)). The quotiéntf (P) has no poles
(and zeros as well) oX, hence it is a constant,

f(P)=Cé& for P =(s,§&). (4.34)
Thus, if we take
éA
e = cé (4.35)
then
K(P)=¢ (4.36)

and relations (4.16)—(4.18) become (2.18)—(2.20), or in other words, the functions defined by
(4.30)—(4.32) solve equations (2.18)—(2.20).

Until now we were operating in a neighbourhood of the pdirand obtained solutions
of equations (2.18)—(2.20), and hence of (2.9) and (2.10), i.e. solved the ‘positive’ part of the
ALH. To take into account the ‘negative’ equations (2.11) and (2.12), or (2.21)—(2.23), one can
proceed in the similar way, but this time considering flows near another distinguished point,
D, which is a preimage of the poigt = co. It can be shown that functions, o, andp,
given by (4.30)—(4.32) will solve (2.21)—(2.23) provided we introduceztidependence by
replacing

Cz) = ¢(z,2) (4.37)

¢pc(z) = ¢pc(z) + ¢pa(z) (4.38)
Yac(z) = @ac(@) + @ca(2) (4.39)
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(the overbadoes nomean complex conjugation!) where
P

ezl D - e =We = [ w (4.40)

D

and
(4.41)

Gor(Z+I[ET) — Gor(2) =

Thus, now we have all that is necessary to formulate the main result of this paper. The finite-
genus solutions of the ALH can be presented as

0(C(z,2)+nU -V
qn(z,2) = q.&" explo(z, 2)} (Cé((zcé) Z)n+nU) ) (4.42)
0(((z,2) +nU +V) (4.43)

ra(z2,2) = ree " expl—e(z, 2)} 0.3+ nl)

where
B C
U=/ w sz w. (4.44)
A A
The function((z, z) andy(z, z) are given by
o
€(z,2) = Z(C(’") zm +C" Zm) * constant (4.45)
m=1
o0
9.2 =Y (9" zu +¢"™ Zy) + constant (4.46)
m=1
where the constants™, ¢ andg™, gb("“) are defined as coefficients of the series
S (™ e -
(4.47)
; ; iRV P2g+2(§ )
-
: (4.48)

Z (Wl)g—m — IZCkg+l —
m=1  P2gr2(1/8)

with
Pogr2(E) = E212(E)Paern(1/€) (4.49)

and
> O[O1(U —V + W (§))
m) gm _ _| 4.50
2 = e T W ®) (4.50)
Ny pm i A O1OJU + W (1/8))
D gme Edg 0[8)(U +V + W (/&) (4-51)

m=1

The constant is given by (4.35) ang,, r, are arbitrary constants related by (4.15)
The ‘real’ tau-functionr,, can be written as

2expln(z, )} 0(C(z, 7) + nU) (4.52)

- 2
T2(2, 2) = "
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where the constant is given by (4.14),

V(z,2) = i(l/f(’”) Zm + 9™ Z,,) + constant (4.53)
and "~

niw“*ﬂ £ = ié% In Qg‘s[]é]‘(f_‘v‘i;vvgi” (4.52)

i&(’")é"" _ igi OV + W (1/§)) (4.55)

dg = 9[8)(U +V + W (1/&))

m=1
5. Discussion

In this paper we have obtained the finite-genus solutions for the ALH. The results can also
be used to derive the finite-genus solutions for other integrable hierarchies, which can be
‘embedded’ into the ALH (see [10-13]. So, for example, the functions

0(¢(z,2) — V)

01 - _
0=—=0.exp¥(z,2)+o@, )} ——F— 5.1
- VD +e 00 ) &4
p-1 - -0z, 2)+V)
R=——=R.exp{—v¥(z,2) —¢(z,)}———— 5.2
o =y @ } 0¢z.2) (5.2)
where
- C
V=V—U=/ w (5.3)
B
and constant®) ., R, are related by
éA éA 2
O«R, = _|:8 AB Aci| (54)
0p 08
solve the nonlinear Schdinger equation
10,0 + 0110 +20°R =0 (5.5)
—i0oR + 011R + 2QR2 =0 (56)
whered,, = d/9z,,, as well as all higher equations of the hierarchy (see [10]).
The quantities
Tu+1Tp—1 0(Cr(x, x) +(n —1HU)O((r(x, X) + (n + HU)
Ta 0°(Cr(x, x) +nU)
where
Cr(x, B) = ¢Wx + V5 + constant (5.8)
solve the 2D Toda lattice equation
82
- In Pn = Pn-1— 2pn + pu+1. (59)
0x0x

In [12] the relations between the ALH and the Davey—Stewartson equation (together with
the Ishimori model) have been derived. One can find there expressions for the corresponding
finite-genus solutions.
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The last example stems from the fact that for any fixgde quantity

Pn—10n+1
U =rn-1Pnqn+1 = nt—2n+ (510)

n

solves the Kadomtsev—Petviashvili (KP) equation,
01(403u + 0111u + 12u0,u) = 30,5u. (5.11)
Thus, the results of the previous section yield the following finite-genus solution for the KP:

0(Cxp(z1, 22, 23) — V) O(Cp (21, 22, 23) + V)
02(¢k p (21, 22, 23))

Crp(z1. 22, 23) = (V21 + ¢ P2y + ¢Pz3 + constant (5.13)

Here | set» = 0 in (5.10) and omitted thg, dependence for ath as well as the dependence
onz, form > 3. This solution differs from the already known one which corresponds to
an odd-order polynomigb,,+1 and, which is crucial, has been obtained by considering flows
near the infinity £ (P) = oo) which in this case is a ramification (Weierstrass) point (the
pointé = oo has only one preimage on the Riemann surface). | cannot at present discuss
solution (5.12) in detail. For example, | do not know whether it is possible to obtain from
(5.12) any non-triviakeal solutions. In any case, solution (5.12) seems to be interesting and
worthy of subsequent studies.

To conclude, | wantto point out the main differences between the approach of this paper and
ones used earlier[2—6]. Inthe IST-based methods the hyperelliptic curves appearin the analysis
of the spectral data of the scattering problem (2.1), while the dependence on the coordinates
is derived from the system (2.2). Here we did not use the zero-curvature representation (2.1)
and (2.2) explicitly (though it is surely hidden in the functional equations (2.9)—(2.12)). We
started with an almost arbitrary polynomigb,+, (the fact that it is related to the transfer
matrix of the scattering problem (2.1) was not crucial for our consideration) and obtained the
zj, Z; dependencdirectly from the equations of the ALH (and not from the corresponding
equations for the transfer matriy).

Asto the algebro-geometrical method, the main distinguishing pointis that the approach of
the work [6] (and analogous works devoted to other integrable equations) is, so to say ‘global’,
while ours is ‘local’. The authors of [6] used the Baker—Akhiezer function and other structures
defined for the whole Riemann surfake At the same time we did not use globally defined
objects: each time we introduced some functions depending on the paifiithe Riemann
surfaceX it was understood that it is defined in some vicinity of some distinguished pBint (
or D). We even did not discuss the question of whether our functionsygayP), are well
defined, or single-valued, for alt, P € X. All we needed was the Taylor expansions, say
(4.28), hence for our purposes it was enough that our functions exist locallg, betonging
to some (arbitrary small) neighbourhood of the pdinfor D).

Lastly, I would like to note that the idea of applying Fay's identity to differential equations
is far from new. For example, in the book [8] one can find few examples of how to demonstrate
that6-functions of some arguments solve the KP, KdV, sine—Gordon equations. However, in
these examples the main question is how seomabinationf differential operators (flows)
acton &@-function. To my knowledge the problem of action of these operators tarately
has not been considered before. Now we know a partial answer: the flows near a regular (not
Weierstrass) point of a Riemann surface can be described by means of the equations of the
ALH. Such an appearance of the ALH seems to be new and rather interesting. Combined with
the results of the works [9—-13] it can be viewed as one more point indicating the ‘universality’
of this hierarchy.

u= O.R, (5.12)
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