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Abstract. The question of constructing the finite-genus quasiperiodic solutions for the Ablowitz–
Ladik hierarchy (ALH) is considered by establishing relations between the ALH and Fay’s identity
for theθ -functions. It is shown that using a limiting procedure one can derive from the latter an
infinite number of differential identities, which can be arranged as an infinite set of differential-
difference equations coinciding with the equations of the ALH, and that the original Fay’s identity
can be rewritten in a form similar to the functional equations representing the ALH which have
been derived in the previous works of the author. This provides an algorithm for obtaining some
class of quasiperiodic solutions for the ALH, which can be viewed as an alternative to the inverse
scattering transform or the algebro-geometrical approach.

1. Introduction

The problem of constructing quasiperiodic solutions (QPS) is one of the most challenging
problems of the theory of integrable systems, and many mathematicians and physicists have
spent much effort to obtain the QPS for almost all equations that are known to be integrable.
The Ablowitz–Ladik hierarchy (ALH), which has been introduced in [1], is no exception. So,
for example, one should mention the works by Bogolyubov and co-workers [2, 3] and Ahmad
and Chowdhury [4, 5] devoted to the discrete nonlinear Schrödinger equation (DNLSE) and the
discrete modified Korteveg–de Vries equation (DMKdV), which are the best studied equations
of the ALH. There authors were studying this problem within the framework of the inverse
scattering transform (IST). Another, the so-called algebraic-geometrical, approach has been
used by Milleret al [6] who considered the complex version of the DNLSE and obtained
the Baker–Akhiezer function and QPS corresponding to finite-genus Riemann surfaces. This
work provides an almost exhaustive solution of the problem of the finite-genus QPS, but its
results need some further simplification to be useful for practical purposes, especially if one
wants to extend them to the higher equations of the ALH and in this work I will try to avoid
algebro-geometrical language, and will use a more direct (and simpler) strategy. As has been
established in [2–6], each finite-genus QPS of the DNLSE can be presented as a quotient of
theθ -functions of some arguments multiplied by an exponent of some phase, all of them being
somelinear functions of the coordinates (the same is true in the cases of the DMKdV as well
as all other equations of the hierarchy). Thus, since we know the structure of the solutions,
all we have to do to derive them is to calculate some number of constant parameters. So,
it is desirable to develop some method, which will enable us to obtain these constants (and
hence solutions) straightforwardly, not using technique (sometimes rather complicated) of the
theory of functions and differentials on hyperelliptic Riemann surfaces. It turns out that this
can be done. Moreover, this can be done not only for the DNLSE or DMKdV but, in principle,
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for all equations of the hierarchy simultaneously. Namely, this is the main question of this
paper. The key point is that theθ -functions of the finite-genus Riemann surfaces (of which
the finite-genus QPS are built-up) satisfy some algebraic relation, the so-called Fay’s trisecant
formula [7, 8], which can be used to obtain an infinite number of differential identities, which,
as will be shown below, are closely related to the ALH, and can be used to obtain the QPS we
are looking for. Such an approach also demonstrates some new, to my knowledge, feature of
the ALH (and this was one of the main motivations to write this paper): the equations of the
ALH naturally appear when flows over Riemann surfaces are considered (I will return to this
question below).

The paper is organized as follows. After presenting some basic facts on the ALH (section 2)
I will discuss Fay’s formula and its differential consequences (section 3). These results will
be used to obtain the finite-genus QPS for the ALH (section 4).

2. Ablowitz–Ladik hierarchy

The ALH is an infinite set of integrable differential-difference equations, which was introduced
in [1]. All equations of the ALH can be presented as the compatibility condition for the linear
system

9n+1 = Un9n (2.1)
∂

∂zj
9n = V (j)n 9n j = ±1,±2, . . . (2.2)

where9n is a 2-column,Un andVn are 2× 2 matrices withUn being given by

Un = Un(λ) =
(
λ rn

qn λ−1

)
(2.3)

(hereλ is the auxiliary (spectral) constant parameter) and the matricesV
(j)
n are polynomials

in λ, λ−1. The ALH can be split in a natural way into two subsystems (subhierarchies). One
of them corresponds to the case whenV (j)n , j = 1, 2, . . . , arej th-order polynomials inλ−1

(‘positive’ subhierarchy). Its simplest equations are
∂qn

∂z1
= −ipnqn+1 (2.4)

∂rn

∂z1
= ipnrn−1 (2.5)

where

pn = 1− qnrn. (2.6)

The ‘negative’ subhierarchy is build up of theV -matrices being polynomials inλ. Its simplest
equations are

∂qn

∂z̄1
= −ipnqn−1 (2.7)

∂rn

∂z̄1
= ipnrn+1. (2.8)

(I use the notation̄zj = z−j , j = 1, 2, . . .).
It has been shown in [10] that the ALH can be presented in the form of the functional-

difference equations:

qn(z, z̄)− qn(z− i[ξ ], z̄) = ξ [1− qn(z, z̄)rn(z− i[ξ ], z̄)]qn+1(z, z̄) (2.9)

rn(z, z̄)− rn(z + i[ξ ], z̄) = ξ [1− qn(z + i[ξ ], z̄)rn(z, z̄)]rn−1(z, z̄) (2.10)
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for the ‘positive’ subhierarchy, and

qn(z, z̄)− qn(z, z̄− i[ξ−1]) = ξ−1[1− qn(z, z̄)rn(z, z̄− i[ξ−1])]qn−1(z, z̄) (2.11)

rn(z, z̄)− rn(z, z̄ + i[ξ−1]) = ξ−1[1− qn(z, z̄ + i[ξ−1])rn(z, z̄)]rn+1(z̄, z) (2.12)

for the ‘negative’ one. Here the designations

f (z, z̄) = f (z1, z2, z3, . . . , z̄1, z̄2, z̄3, . . .) (2.13)

and

f (z± i[ξ ], z̄) = f (z1± iξ, z2 ± iξ2/2, z3± iξ3/3, . . . , z̄1, z̄2, z̄3, . . .
)

(2.14)

f (z, z̄± i[ξ−1]) = f (z1, z2, z3, . . . , z̄1± iξ−1, z̄2 ± iξ−2/2, z̄3± iξ−3/3, . . .
)

(2.15)

are used. Expanding equations (2.9) and (2.10) in power series inξ one can obtain all equations
of the ‘positive’ subhierarchy. Analogously, expanding equations (2.11) and (2.12) in power
series inξ−1 one can obtain all equations of the ‘negative’ one.

In what follows I will also use the tau-functions of the ALH,σn, ρn andτn, which are
defined by

qn = σn

τn
rn = ρn

τn
(2.16)

and

τn−1τn+1 = τ 2
n − σnρn. (2.17)

The functional representation of the ALH in terms of the tau-functions can be written as

τn(z) σn(z + i[ξ ])− σn(z) τn(z + i[ξ ]) = ξ τn−1(z) σn+1(z + i[ξ ]) (2.18)

ρn(z) τn(z + i[ξ ])− τn(z) ρn(z + i[ξ ]) = ξ ρn−1(z) τn+1(z + i[ξ ]) (2.19)

τn(z) τn(z + i[ξ ])− ρn(z) σn(z + i[ξ ]) = τn−1(z) τn+1(z + i[ξ ]) (2.20)

(where the dependence onz̄j is omitted) and

τn(z̄) σn(z̄ + i[ξ−1])− σn(z̄) τn(z̄ + i[ξ−1]) = ξ−1 τn+1(z̄) σn−1(z̄ + i[ξ−1]) (2.21)

ρn(z̄) τn(z̄ + i[ξ−1])− τn(z̄) ρn(z̄ + i[ξ−1]) = ξ−1 ρn+1(z̄) τn−1(z̄ + i[ξ−1]) (2.22)

τn(z̄) τn(z̄ + i[ξ−1])− ρn(z̄) σn(z̄ + i[ξ−1]) = τn+1(z̄) τn−1(z̄ + i[ξ−1]) (2.23)

(where the dependence onzj is omitted) [9, 10].
The key idea of the present work is to establish the relation between these equations and

Fay’s famous identity for theθ -functions, which can be used to derive the finite-gap QPS of
the ALH.

3. Fay’s identity

In this paper we will deal with the compact Riemann surfaceX of the genusg corresponding
to the hyperelliptic curve

s2 = P2g+2(ξ) (3.1)

whereP2g+2(ξ) is a polynomial without multiple roots of degree 2g + 2. In the framework of
the IST such curves appear in the analysis of the scattering problem (2.1). For example, in the
case of the periodic conditions

qn+g+1 = qn rn+g+1 = rn (3.2)
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the polynomialP2g+2(ξ) is defined by

P2g+2(λ
2) = λ2(g+1)

{
[tr Tn(λ)]

2 − 4 detTn(λ)
}

(3.3)

whereTn(λ) is the transfer matrix of the scattering problem (2.1),

Tn(λ) = Un+g(λ) . . . Un(λ) (3.4)

(it can be shown straightforwardly that the right-hand side of (3.3) under the restriction (3.2)
does not depend on the indexn). Topologically,X is a sphere withg handles. One can choose
a set of 2g closed contours (cycles){ai, bi}i=1,...,g with the intersection indices

ai ◦ aj = bi ◦ bj = 0 ai ◦ bj = δij i, j = 1, . . . , g (3.5)

and findg independent holomorphic differentials, say ones given locally by

ω̃k = ξk−1 dξ√
P2g+2(ξ)

k = 1, . . . , g (3.6)

which can be used to construct the canonical basis of the holomorphic 1-forms

ωk =
g∑
l=1

Ck,lω̃l (3.7)

whereωk satisfy the normalization conditions∮
ai

ωk = δik. (3.8)

Then, the matrix of theb-periods,

�ik =
∮
bi

ωk (3.9)

determines the so-called period lattice,L� = {m + �n,m,n ∈ Zg}, the Jacobian of this
surface Jac(X) = Cg/L� (2g torus) and Abel mappingX→ Jac(X),

P →
∫ P

P0

ω (3.10)

whereω is theg-vector of the 1-forms,ω = (ω1, . . . , ωg)
T andP0 is some fixed point ofX.

A central object of the theory of the compact Riemann surfaces is theθ -function,
θ(ζ) = θ(ζ, �),

θ(ζ) =
∑
n∈Zg

exp{π in�n + 2π inζ} (3.11)

which is a quasiperiodic function onCg

θ(ζ +n) = θ(ζ) (3.12)

θ(ζ +�n) = exp{−π in�n− 2π inζ}θ(ζ) (3.13)

for n ∈ Zg.
To simplify the following formulae I will use the designations

θAB (ζ) = θ
(
ζ +

∫ A

B

ω

)
(3.14)
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and

θ̂AB = θ [δ]

(∫ A

B

ω

)
. (3.15)

Hereθ [c](ζ) is the so-calledθ -function with characteristics,

θ [c](ζ) = exp{π ia�a + 2π ia(ζ + b)}θ(ζ +�a + b) c = (a, b) (3.16)

andδ = (δ′, δ′′) ∈ 1
2Z

2g/Z2g is a non-singular odd characteristic,

θ [δ](0) = 0 gradζ θ [δ](0) 6= 0. (3.17)

Function (3.15) is closely related to the prime form [7, 8],

E(P,Q) = θ̂ PQ√
χ(P )

√
χ(Q)

(3.18)

whereχ is given by

χ(P ) =
g∑
i=1

(
∂

∂ζi
θ [δ]

)
(0)ωi(P ). (3.19)

The prime formE(P,Q) is skew-symmetric,E(P,Q) = −E(Q,P ), has a first-order zero
along the diagonalP = Q and is otherwise non-zero. Analogously,

θ̂PQ = −θ̂QP θ̂PP = 0. (3.20)

One of the most interesting results of the theory of theθ -functions is the following identity
for theθ -functions associated with the finite-genus Riemann surfaces, Fay’s identity:

θ̂
P1
P3
θ̂
P4
P2
θ
P1
P2
(ζ) θP4

P3
(ζ)− θ̂ P1

P2
θ̂
P4
P3
θ
P1
P3
(ζ) θP4

P2
(ζ) = θ̂ P2

P3
θ̂
P4
P1
θ (ζ) θP1P4

P2P3
(ζ) (3.21)

(hereP1, . . . , P4 are arbitrary points ofX) and namely this formula will be the basis of the
following consideration.

4. Quasiperiodic solutions

It is already known that in the quasiperiodic case the tau-functions of the ALH are (up to some
simple factors) theθ -functions of different arguments and I am now going to present Fay’s
identity and some of its corollaries in a form similar to (2.18)–(2.20) and (2.21)–(2.23), which
will enable us to obtain the finite-gap solutions of these functional equations, i.e. to obtain the
finite-gap solutions of the ALH.

Hereafter I will use the lettersA,B,C andD for the points of the Riemann surface, which
correspond to the points 0 and∞ of the complex plane,

A = ∞+ D = ∞− B = 0− C = 0+. (4.1)

SinceA,D andB,C are poles and zeros of the meromorphic functionπ(P ), which is a
projection ofX onto the extended complex planeP1 sending a pointP = (s, ξ) into ξ , they
satisfy, according to Abel’s theorem, the condition

∫ AD
BC

ω ∈ L�. The integration paths in
(3.10) can be chosen in such a way that∫ AD

BC

ω = 0 (4.2)
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(here zero stands for0 from Cg, not from Jac(X)) and in what follows I will accept (4.2) as
true.

Now I am going to use (3.21) thinking of three points from(P1, P2, P3, P4) as constant
(I will choose them from the set(A,B,C,D)) and the fourth one (I will denote it byP ) as
variable. Setting(P1, P2, P3, P4) = (A,B,C, P ) one can rewrite (3.21) as

θ̂BC θ̂
P
A θ (ζ) θ

P
D (ζ) + θ̂AB θ̂

P
C θ

A
C (ζ) θ

P
B (ζ) = θ̂AC θ̂PB θAB (ζ) θPC (ζ). (4.3)

This formula is the quasiperiodic analogue of (2.18). Shifting the arguments of theθ -functions,
ζ → ζ +

∫ C
A
ω, one can obtain the equation, which will be transformed below to (2.19):

θ̂BC θ̂
P
A θ

C
A (ζ) θ

P
B (ζ) + θ̂AB θ̂

P
C θ (ζ) θ

CP
AB (ζ) = θ̂AC θ̂PB θCB (ζ) θPA (ζ). (4.4)

At last, replacing in (3.21)(P1, P2, P3, P4)with (A, P,C,D) using (4.2) and making the shift
ζ → ζ +

∫ C
A
ω one can write the identity

θ̂AD θ̂
P
C θ (ζ) θ

P
B (ζ)− θ̂AB θ̂PA θCA (ζ) θPD (ζ) = θ̂AC θ̂PD θAB (ζ) θPA (ζ) (4.5)

which is a quasiperiodic analogue of (2.20).
Our first goal is to present equations (4.3)–(4.5) in the bilinear form. To this end I will

first shift the arguments of theθ -functions:ζ → ζn,

ζn = ζ + n
∫ B

A

ω. (4.6)

Next, I will introduce the functionsσn(P ), ρn(P ) andτn(P ),

τn(P ) = αn(P ) θPB (ζn) (4.7)

σn(P ) = βn(P ) θPD (ζn) (4.8)

ρn(P ) = γn(P ) θCPAB (ζn). (4.9)

It is not difficult to verify that if one chooses the functionsαn, βn, γn as follows:

αn(P ) = α∗µn2/2 exp{nϕDC(P )} (4.10)

βn(P ) = q∗εn exp{ϕAC(P )}αn(P ) (4.11)

γn(P ) = r∗ε−n exp{−ϕAC(P )}αn(P ) (4.12)

where the functionsϕQR are defined in the vicinity of the pointB by

exp{ϕQR(P )− ϕQR(B)} =
θ̂ PQ

θ̂PR

θ̂BR

θ̂BQ

(4.13)

the constantµ is given by

µ =
(
θ̂AC
)2

θ̂AD θ̂
B
C

(4.14)

andα∗, q∗, r∗ andε are arbitrary constants satisfying

q∗r∗ = −
(
θ̂AB
)2

θ̂AD θ̂
B
C

(4.15)

then (4.3)–(4.5) can be rewritten in terms of the functionsσn(P ), ρn(P ) andτn(P ) as

τn(B) σn(P )− σn(B) τn(P ) = K(P ) τn−1(B) σn+1(P ) (4.16)

ρn(B) τn(P )− τn(B) ρn(P ) = K(P ) ρn−1(B) τn+1(P ) (4.17)

τn(B) τn(P )− ρn(B) σn(P ) = τn−1(B) τn+1(P ) (4.18)
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where

K(P ) = 1

ε

θ̂AD

θ̂BC

θ̂PB θ̂
P
C

θ̂PA θ̂
P
D

. (4.19)

Thus we have presented Fay’s identities in the bilinear form similar to (2.18)–(2.20). What
I have to do now is to introduce az dependence in such a way that a shift over the Riemann
surface from pointB to a pointP (which correspond to the points 0 andξ of the complex
plane) can be taken into account by the simultaneous shiftszm→ zm + iξm/m:

fn(B) = fn(z) = fn(z1, z2, z3, . . .), (4.20)

fn(P ) = fn(z + i[ξ ]) = fn(z1 + iξ, z2 + iξ2/2, z3 + iξ3/3, . . .). (4.21)

(I hope that the usage of the same letters for functional dependence on both the point of the
Riemann surface and the ALH variableszm will not lead to confusion.) In other words, I want
to introduce functionsζ(z1, z2, . . .) andϕQR(z1, z2, . . .) such that

ζ(z + i[ξ ])− ζ(z) =
∫ P

B

ω (4.22)

and

ϕQR(z + i[ξ ])− ϕQR(z) = ϕQR(P )− ϕQR(B). (4.23)

This can be done as follows. In the neighbourhood of the pointB (which is a preimage of the
point ξ = 0 of the complex plane) the components of the integral in (4.22) can be presented
in terms of theξ -coordinate as∫ P

B

ωk = Wk(ξ) = −
g∑
l=1

Ck,l

∫ ξ

0

xl−1 dx√
P2g+2(x)

(4.24)

where the sign of the square root is fixed by
√

1 = 1. Hence, takingζ to be a linear function
of the coordinateszm,

ζ = ζ(z) =
∞∑
m=1

ζ(m) zm (4.25)

one can conclude that to satisfy (4.22) the vectorsζ(m) should be defined as the coefficients of
the series

∞∑
m=1

ζ(m) ξm = −iξ
d

dξ
W (ξ) (4.26)

(hereW is the vector with the componentsWk). Using (4.24) one can rewrite (4.26) as

∞∑
m=1

ζ
(m)
k ξm = i

g∑
l=1

Ck,l
ξ l√
P2g+2(ξ)

(4.27)

(the right-hand side of this equation should be understood as a power series inξ ).
In a similar way one can tackle equation (4.23) and to derive the following result:ϕQR(z)

is the linear function,

ϕQR(z) =
∞∑
m=1

ϕ
(m)
QR zm (4.28)
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with the coefficientsϕ(m)QR being defined by

∞∑
m=1

ϕ
(m)
QR ξ

m = −iξ
d

dξ
ln
θ [δ]

(∫ B
Q
ω +W (ξ)

)
θ [δ]

(∫ B
R
ω +W (ξ)

) (4.29)

(the right-hand side is again a power series inξ ).
Thus one can write the following expressions for the tau-functions:

τn(z) = α∗µn2/2 exp{nϕDC(z)} θ(ζn(z)) (4.30)

σn(z) = q∗εnµn2/2 exp{nϕDC(z) + ϕAC(z)} θ
(
ζn(z)−

∫ C

A

ω

)
(4.31)

ρn(z) = r∗ε−nµn2/2 exp{nϕDC(z)− ϕAC(z)} θ
(
ζn(z) +

∫ C

A

ω

)
. (4.32)

At last, we have to rewrite the functionK(P ) from the right-hand side of (4.16)–(4.18).
This is the first time, since Fay’s identity has been written down, that we need some facts from
the theory of the Riemann surfaces—until now everything has been done by simple algebra.
Consider the function

f (P ) = θ̂ PB θ̂
P
C

θ̂PA θ̂
P
D

. (4.33)

This is a single-valued (due to condition (4.2)) function which possesses zeros at the pointsB,
C and poles atA,D. Remembering thatB, C correspond toξ = 0, andA,D to ξ = ∞, one
can easily obtain one function with the same divisor,B +C − A−D, namely, the projection
π(P ) discussed above (see the paragraph before (4.2)). The quotientπ(P )/f (P ) has no poles
(and zeros as well) onX, hence it is a constant,

f (P ) = Cξ for P = (s, ξ). (4.34)

Thus, if we take

ε = C θ̂
A
D

θ̂BC

(4.35)

then

K(P ) = ξ (4.36)

and relations (4.16)–(4.18) become (2.18)–(2.20), or in other words, the functions defined by
(4.30)–(4.32) solve equations (2.18)–(2.20).

Until now we were operating in a neighbourhood of the pointB and obtained solutions
of equations (2.18)–(2.20), and hence of (2.9) and (2.10), i.e. solved the ‘positive’ part of the
ALH. To take into account the ‘negative’ equations (2.11) and (2.12), or (2.21)–(2.23), one can
proceed in the similar way, but this time considering flows near another distinguished point,
D, which is a preimage of the pointξ = ∞. It can be shown that functionsτn, σn andρn
given by (4.30)–(4.32) will solve (2.21)–(2.23) provided we introduce thez̄ dependence by
replacing

ζ(z)→ ζ(z, z̄) (4.37)

ϕDC(z)→ ϕDC(z) + ϕ̄BA(z̄) (4.38)

ϕAC(z)→ ϕAC(z) + ϕ̄CA(z̄) (4.39)
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(the overbardoes notmean complex conjugation!) where

ζ(z, z̄ + i[ξ−1])− ζ(z, z̄) =W (ξ−1) =
∫ P

D

ω (4.40)

and

ϕ̄QR(z̄ + i[ξ−1])− ϕ̄QR(z̄) = ln
θ̂PQ

θ̂PR

θ̂DR

θ̂DQ

. (4.41)

Thus, now we have all that is necessary to formulate the main result of this paper. The finite-
genus solutions of the ALH can be presented as

qn(z, z̄) = q∗εn exp{ϕ(z, z̄)}θ(ζ(z, z̄) + nU − V )
θ(ζ(z, z̄) + nU)

(4.42)

rn(z, z̄) = r∗ε−n exp{−ϕ(z, z̄)}θ(ζ(z, z̄) + nU + V )

θ(ζ(z, z̄) + nU)
(4.43)

where

U =
∫ B

A

ω V =
∫ C

A

ω. (4.44)

The functionsζ(z, z̄) andϕ(z, z̄) are given by

ζ(z, z̄) =
∞∑
m=1

(
ζ(m) zm + ζ̄

(m)
z̄m
)

+ constant (4.45)

ϕ(z, z̄) =
∞∑
m=1

(
ϕ(m) zm + ϕ̄(m) z̄m

)
+ constant (4.46)

where the constantsζ(m), ζ̄
(m)

andϕ(m), ϕ̄(m) are defined as coefficients of the series
∞∑
m=1

ζ
(m)
k ξm = i

g∑
l=1

Ck,l
ξ l√
P2g+2(ξ)

(4.47)

∞∑
m=1

ζ̄
(m)
k ξ−m = −i

g∑
l=1

Ck,g+1−l
ξ−l√

P2g+2(1/ξ)
(4.48)

with

P2g+2(ξ) = ξ2g+2(ξ)P2g+2(1/ξ) (4.49)

and
∞∑
m=1

ϕ(m) ξm = iξ
d

dξ
ln
θ [δ](U − V +W (ξ))

θ [δ](U +W (ξ))
(4.50)

∞∑
m=1

ϕ̄(m) ξ−m = iξ
d

dξ
ln

θ [δ](U +W (1/ξ))

θ [δ](U + V +W (1/ξ))
. (4.51)

The constantε is given by (4.35) andq∗, r∗ are arbitrary constants related by (4.15).
The ‘real’ tau-functionτn can be written as

τn(z, z̄) = α∗µn2/2 exp{nψ(z, z̄)} θ(ζ(z, z̄) + nU) (4.52)
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where the constantµ is given by (4.14),

ψ(z, z̄) =
∞∑
m=1

(
ψ(m) zm + ψ̄(m) z̄m

)
+ constant (4.53)

and
∞∑
m=1

ψ(m) ξm = iξ
d

dξ
ln
θ [δ](U − V +W (ξ))

θ [δ](−V +W (ξ))
(4.54)

∞∑
m=1

ψ̄(m) ξ−m = iξ
d

dξ
ln

θ [δ](V +W (1/ξ))

θ [δ](U + V +W (1/ξ))
. (4.55)

5. Discussion

In this paper we have obtained the finite-genus solutions for the ALH. The results can also
be used to derive the finite-genus solutions for other integrable hierarchies, which can be
‘embedded’ into the ALH (see [10–13]. So, for example, the functions

Q = σ1

τ0
= Q∗ exp{ψ(z, z̄) + ϕ(z, z̄)}θ(ζ(z, z̄)− Ṽ )

θ(ζ(z, z̄))
(5.1)

R = ρ−1

τ0
= R∗ exp{−ψ(z, z̄)− ϕ(z, z̄)}θ(ζ(z, z̄) + Ṽ )

θ(ζ(z, z̄))
(5.2)

where

Ṽ = V −U =
∫ C

B

ω (5.3)

and constantsQ∗, R∗ are related by

Q∗R∗ = −
[
ε
θ̂AB θ̂

A
C

θ̂AD θ̂
B
C

]2

(5.4)

solve the nonlinear Schrödinger equation

i∂2Q + ∂11Q + 2Q2R = 0 (5.5)

−i∂2R + ∂11R + 2QR2 = 0 (5.6)

where∂m = ∂/∂zm, as well as all higher equations of the hierarchy (see [10]).
The quantities

pn = τn+1τn−1

τ 2
n

= µθ(ζT (x, x̄) + (n− 1)U)θ(ζT (x, x̄) + (n + 1)U)

θ2(ζT (x, x̄) + nU)
(5.7)

where

ζT (x, x̄) = ζ(1)x + ζ̄
(1)
x̄ + constant (5.8)

solve the 2D Toda lattice equation

∂2

∂x∂x̄
lnpn = pn−1− 2pn + pn+1. (5.9)

In [12] the relations between the ALH and the Davey–Stewartson equation (together with
the Ishimori model) have been derived. One can find there expressions for the corresponding
finite-genus solutions.



Finite-genus solutions for the Ablowitz–Ladik hierarchy 4993

The last example stems from the fact that for any fixedn the quantity

u = rn−1pnqn+1 = ρn−1σn+1

τ 2
n

(5.10)

solves the Kadomtsev–Petviashvili (KP) equation,

∂1(4∂3u + ∂111u + 12u∂1u) = 3∂22u. (5.11)

Thus, the results of the previous section yield the following finite-genus solution for the KP:

u = Q∗R∗ θ(ζKP (z1, z2, z3)− Ṽ ) θ(ζKP (z1, z2, z3) + Ṽ )

θ2(ζKP (z1, z2, z3))
(5.12)

ζKP (z1, z2, z3) = ζ(1)z1 + ζ(2)z2 + ζ(3)z3 + constant. (5.13)

Here I setn = 0 in (5.10) and omitted thēzm dependence for allm as well as the dependence
on zm for m > 3. This solution differs from the already known one which corresponds to
an odd-order polynomialP2g+1 and, which is crucial, has been obtained by considering flows
near the infinity (π(P ) = ∞) which in this case is a ramification (Weierstrass) point (the
point ξ = ∞ has only one preimage on the Riemann surface). I cannot at present discuss
solution (5.12) in detail. For example, I do not know whether it is possible to obtain from
(5.12) any non-trivialreal solutions. In any case, solution (5.12) seems to be interesting and
worthy of subsequent studies.

To conclude, I want to point out the main differences between the approach of this paper and
ones used earlier [2–6]. In the IST-based methods the hyperelliptic curves appear in the analysis
of the spectral data of the scattering problem (2.1), while the dependence on the coordinates
is derived from the system (2.2). Here we did not use the zero-curvature representation (2.1)
and (2.2) explicitly (though it is surely hidden in the functional equations (2.9)–(2.12)). We
started with an almost arbitrary polynomialP2g+2 (the fact that it is related to the transfer
matrix of the scattering problem (2.1) was not crucial for our consideration) and obtained the
zj , z̄j dependencedirectly from the equations of the ALH (and not from the corresponding
equations for the transfer matrixTn).

As to the algebro-geometrical method, the main distinguishing point is that the approach of
the work [6] (and analogous works devoted to other integrable equations) is, so to say ‘global’,
while ours is ‘local’. The authors of [6] used the Baker–Akhiezer function and other structures
defined for the whole Riemann surfaceX. At the same time we did not use globally defined
objects: each time we introduced some functions depending on the pointP of the Riemann
surfaceX it was understood that it is defined in some vicinity of some distinguished point (B

orD). We even did not discuss the question of whether our functions, sayϕQR(P ), are well
defined, or single-valued, for allP , P ∈ X. All we needed was the Taylor expansions, say
(4.28), hence for our purposes it was enough that our functions exist locally, forP belonging
to some (arbitrary small) neighbourhood of the pointB (orD).

Lastly, I would like to note that the idea of applying Fay’s identity to differential equations
is far from new. For example, in the book [8] one can find few examples of how to demonstrate
thatθ -functions of some arguments solve the KP, KdV, sine–Gordon equations. However, in
these examples the main question is how somecombinationsof differential operators (flows)
act on aθ -function. To my knowledge the problem of action of these operators takenseparately
has not been considered before. Now we know a partial answer: the flows near a regular (not
Weierstrass) point of a Riemann surface can be described by means of the equations of the
ALH. Such an appearance of the ALH seems to be new and rather interesting. Combined with
the results of the works [9–13] it can be viewed as one more point indicating the ‘universality’
of this hierarchy.
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